[Next] [Up] [Previous] [Contents]
Next: About this document Up: Kai Nordlund's PhD Thesis Previous: ACKNOWLEDGEMENTS

References

1
W. H. Bragg and W. L. Bragg, Proc. Roy. Soc. 88A (1913), 428; W. L. Bragg, Proc. Roy. Soc. 89A (1913), 248.

2
P. J. Brown and J. B. Forsyth, The crystal structure of solids (Edward Arnold, London, 1973).

3
G. v. Hevesy and W. Seith, Der radioaktive Rückstoß im Dienste von Diffusionsmessungen, Zeits. f. Physik 56, 790 (1929).

4
J. Auleytner, X-ray methods in the study of defects in single crystals (Pergamon, Oxford, 1967).

5
J. W. Mayer and S. S. Lau, Electronic Materials Science For Integrated Circuits in Si and GaAs (MacMillan, New York, 1990).

6
S. M. Sze, Semiconductor Devices, Physics and technology (John Wiley & Sons, New York, 1985).

7
J. Asher, MeV ion processing applications for industry, Nucl. Instr. Meth. Phys. Res. B 89, 315 (1994).

8
D. M. Rück, D. Boos, and I. G. Brown, Improvement in wear characteristics of steel tools by metal ion implantation, Nucl. Instr. Meth. Phys. Res. B 80/81, 233 (1993).

9
M.-A. Hasan, J. Knall, S. A. Barnett, J.-E. Sundgren, L. C. Market, A. Rackett, and J. E. Greene, J. Appl. Phys. 65, 172 (1989).

10
D. J. Bacon and T. D. de la Rubia, Molecular dynamics computer simulations of displacement cascades in metals, J. Nucl. Mat. 216, 275 (1994).

11
W. Bolse, Ion-beam induced atomic transport through bi-layer interfaces of low- and medium-Z metals and their nitrides, Mat. Sci. Eng. Rep. R12, 53 (1994).

12
D. W. Heermann, Computer Simulation Methods in Theoretical Physics (Springer, Berlin, 1986).

13
J. R. Beeler, Radiation effects computer experiments (North Holland, Amsterdam, 1983).

14
B. J. Alder and T. E. Wainwright, in Molecular Dynamics by Electronic Computers, Proc. Intern. Symposium on Transport Processes in Statistical Mechanics (Wiley Interscience, New York, 1957), p. 97.

15
I. M. Torrens, Interatomic Potentials (Academic Press, New York, 1972).

16
J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Phys. Rev. B 39, 5566 (1989).

17
R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

18
W. M. C. Foulkes and R. Haydock, Tight-binding models and density-functional theory, Phys. Rev. B 39, 12520 (1989).

19
P. A. Fedders, D. A. Drabold, and S. Klemm, Defects, tight binding and first-principles molecular dynamics simulation on a-Si, Phys. Rev. B 45, 4048 (1992).

20
S. Goedecker and L. Colombo, Efficient Linear Scaling Algorithm for Tight-Binding Molecular Dynamics, Phys. Rev. Lett. 73, 122 (1994).

21
J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Matter (Pergamon, New York, 1985).

22
J. Lindhard, M. Scharff, and H. E. Shiøtt, Range concepts and heavy ion ranges, Mat. Fys. Medd. Dan. Vid. Selsk. 33, 1 (1963).

23
P. Jung, Atomic displacement functions of cubic metals, J. Nucl. Mat. 117, 70 (1983).

24
K. Saarinen, P. Hautojärvi, J. Keinonen, E. Rauhala, and J. Räisänen, Phys. Rev. B 43, 4249 (1991).

25
T. D. de la Rubia and M. W. Guinan, New Mechanism of Defect Production in Metals: A Molecular-Dynamics Study of Interstitial-Dislocation-Loop Formation at High-Energy Displacement Cascades, Phys. Rev. Lett. 66, 2766 (1991).

26
H. L. Heinisch, B. N. Singh, and T. D. de la Rubia, Calibrating a multi-model approach to defect production in high-energy collision cascades, J. Nucl. Mat. 212-215, 127 (1994).

27
S. Mantl, Materials aspects of ion beam synthesis of epitaxial silicides, Nucl. Instr. Meth. Phys. Res. B 84, 1127 (1993).

28
M. Sayed, J. H. Jefferson, A. B. Walker, and A. G. Gullis, Molecular Dynamics Simulations of Implantation Damage and Recovery in Semiconductors, to be published in Nucl. Instr. Meth. Phys. Res. B (1994).

29
J. S. Williams, R. D. Goldberg, M. Petravic, and Z. Rao, Phase transformation and compound formation during ion irradiation of materials, Nucl. Instr. Meth. Phys. Res. B 84, 199 (1994).

30
B. de Mauduit, L. Laânab, C. Bergaud, M. M. Faye, A. Martinez, and A. Claverie, Identification of EOR defects due to the regrowth of amorphous layers created by ion bombardment, Nucl. Instr. Meth. Phys. Res. B 84, 190 (1994).

31
K. Urban, B. Saile, N. Yoshida, and W. Zag, in Point Defects and Defect Interactions in Metals, edited by J.-I. Takamura (North Holland, Amsterdam, 1982), p. 783.

32
J. Narayan, D. Fath, O. S. Oen, and O. W. Holland, Atomic structure of ion implantation damage and process of amorphization in semiconductors, J. Vac. Sci. Technol. A 2, 1303 (1984).

33
M. Lannoo and J. Bourgoin, Point Defects in Semiconductors (Springer, Berlin, 1981), Vol. II, p. 131.

34
T. Motooka and O. W. Holland, Amorphization process in self-ion-implanted Si: Dose dependence, Appl. Phys. Lett. 58, 2360 (1991).

35
S. Cannavò, M. G. Grimaldi, E. Rimini, G. Ferla, and L. Gandolfi, Ion beam and temperature annealing during high dose implants, Appl. Phys. Lett. 47, 138 (1985).

36
C. E. Christodoulides, R. A. Baragiola, D. Chivers, W. A. Grant, and J. S. Williams, The recrystallization of ion-implanted silicon layers. II. Implant species effect, Rad. Eff 36, 73 (1978).

37
O. W. Holland, J. Narayan, and D. Fathy, Ion beam processes in Si, Nucl. Instr. Meth. Phys. Res. B 7/8, 243 (1985).

38
J. B. Gibson, A. N. Goland, M. Milgram, and G. H. Vineyard, Dynamics of Radiation Damage, Phys. Rev 120, 1229 (1960).

39
C. Erginsoy, G. H. Vineyard, and A. Englert, Dynamics of Radiation Damage in a Body-Centered Cubic Lattice, Phys. Rev. 133, 595 (1964).

40
R. Smith, J. Don E. Harrison, and B. J. Garrison, keV particle bombardment of semiconductors: A molecular dynamics simulation, Phys. Rev. B 40, 93 (1989).

41
H. Feil, H. J. W. Zandvliet, M.-H. Tsai, J. D. Dow, and I. S. Tsong, Random and Ordered Defects on Ion-Bombarded Si (100) - (2 x 1) Surfaces, Phys. Rev. Lett. 69, 3076 (1992).

42
T. Diaz de la Rubia, A. Caro, M. Spaczer, G. A. Janaway, M. W. Guinan, and M. Victoria, Radiation-induced disordering and defect production in Cu3Au and Ni3Al studied by molecular dynamics simulation, Nucl. Instr. Meth. Phys. Res. B 80/81, 86 (1993).

43
M. Ghaly and R. S. Averback, Effect of Viscous Flow on Ion damage near Solid Surfaces, Phys. Rev. Lett. 72, 364 (1994).

44
T. Mattila and R. Nieminen, Direct Antisite Formation in Electron Irradiation of GaAs, Phys. Rev. Lett. (1995), accepted for publication.

45
D. Beeman, Some Multistep Methods for Use in Molecular Dynamics Calculations, J. Comp. Phys. 20, 130 (1976).

46
R. Smith and D. E. Harrison, Jr., Algorithms for molecular dynamics simulations of keV particle bombardment, Computers in Physics Sep/Oct 1989, 68 (1989).

47
G. Galli and F. Mauri, Large Scale Quantum Simulations: C60Impacts on a Semiconducting Surface, Phys. Rev. Lett. 73, 3471 (1994).

48
Leena Torpo, private communication.

49
R. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).

50
DMol is a trademark of Bio Sym. Inc., San Diego, California, USA.

51
F. H. Stillinger and T. A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B 31, 5262 (1985).

52
J. Tersoff, Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon, Phys. Rev. Lett. 61, 2879 (1988).

53
J. R. Chelikowsky and J. C. Phillips, Surface and thermodynamic interatomic force fields for silicon clusters and bulk phases, Phys. Rev B 41, 5735 (1990).

54
D. W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B 42, 9458 (1990).

55
M. C. Schabel and J. L. Martins, Structural model for pseudobinary semiconductor alloys, Phys. Rev. B 43, 11873 (1991).

56
W. Eckstein, in Ref. [86], eq. (4.4.3) on p. 55.

57
L. C. Feldman and J. W. Mayer, Fundamentals of Surface and Thin Film Analysis (North-Holland, New York, 1986).

58
W. M. A. Bik and F. H. P. M. Habraken, Elastic recoil detection, Rep. Prog. Phys. 56, 859 (1993).

59
M. Erola, J. Keinonen, M. Hautala, and M. Uhrmacher, Relocation of Si atoms in kilo-electron-volt and mega-electron-volt Si-ion irradiation of crystalline Si, Nucl. Instr. Meth. Phys. Res. B 34, 42 (1988).

60
O. S. Oen, D. K. Holmes, and M. T. Robinson, J. Appl. Phys. 34, 302 (1963).

61
M. T. Robinson and I. M. Torrens, Computer Simulation of atomic-displacement cascades in solids in the binary-collision approximation, Phys. Rev. B 9, 5008 (1974).

62
M. Hautala and I. Koponen, Distributions of implanted ions in solids, Defect and Diffusion Forum 57-58, 61 (1988).

63
W. Möller and W. Eckstein, TRIDYN - a TRIM simulation code including dynamic composition changes, Nucl. Instr. Meth. Phys. Res. B 2, 814 (1984).

64
M. T. Robinson, Computer simulation studies of high-energy collision cascades, Nucl. Instr. Meth. Phys. Res. B 67, 396 (1992).

65
D. Fröse, D. Kollewe, and W. von Münch, Investigations of carbon implanted silicon, Nucl. Instr. Meth. Phys. Res. B 79, 668 (1993).

66
K. Gärtner, M. Nitshke, and W. Eckstein, Computer simulation studies of low energy B implantation into amorphous and crystalline silicon, Nucl. Instr. Meth. Phys. Res. B 83, 87 (1993).

67
J. Likonen and M. Hautala, Binary collision lattice simulation study of model parameters in monocrystalline sputtering, J. Phys.: Condens. Matter 1, 4697 (1989).

68
A presentation of the program MDRANGE is available on the World Wide Web in http://beam.helsinki.fi/~knordlun/mdh/mdh_program.html.

69
A. Kehrel, J. Keinonen, P. Haussalo, K. P. Lieb, and M. Uhrmacher, Hydrogen trapping at radiation defects in sodium-implanted iron, nickel and molybdenum, Radiat. Eff. and Defs. 118, 297 (1991).

70
U. Yarkulov, Energy dependence of silicon amorphization during ion implantation - part I, Rad. Eff. 100, 11 (1986).

71
D. A. Drabold, P. A. Fedders, O. F. Sankey, and J. D. Dow, Molecular-dynamics simulation of amorphous Si, Phys. Rev. B 42, 5135 (1990).

72
D. A. Drabold, private communication.

73
T. W. Fan, J. P. Zhang, R. M. Gwilliam, and P. L. F. Hemment, Secondary defects in recrystallized 400 keV Ge+ ion implanted Si, Nucl. Instr. Meth. Phys. Res. B 71, 17 (1992).

74
N. Hayashi, R. Suzuki, M. Hasegawa, N. Kobayashi, S. Tanigawa, and T. Mikado, Ion-Beam-Induced Recrystallization in Si (100) Studied with Slow Positron Annihilation and Rutherford Backscattering and Channeling, Phys. Rev. Lett. 70, 45 (1993).

75
L. C. Feldman, J. W. Mayer, and S. T. Picraux, Materials Analysis by Ion Channeling (Academic, New York, 1982).

76
P. L. F. Hemment, E. Maydell-ondrusz, K. G. Stephens, J. Butcher, D. Ioannou, and J. Alderman, Formation of buried insulating layers in silicon by the implantation of high doses of oxygen, Nucl. Instr. Meth. Phys. Res. B 209/210, 157 (1983).

77
J. F. Knudsen, P. M. Adams, D. L. Leung, R. C. Cole, and D. C. Mayer, X-ray, XTEM and RBS analysis of recrystallized ion beam amorphized CVD Si, Nucl. Instr. Meth. Phys. Res. B 59/60, 1067 (1991).

78
J. D. Williams and P. Ashburn, Epitaxial regrowth of n+ and p+ polycrystalline silicon layers given single and double diffusion, J. Appl. Phys 72, 3169 (1992).

79
S. Raman, E. T. Jurney, J. W. Warner, A. Kuronen, J. Keinonen, K. Nordlund, and D. J. Millener, Lifetimes in 15N from gamma-ray lineshapes produced in the ²H(14N,p \gamma) and 14N(thermal n,\gamma) reactions, Phys. Rev. C. 50, 682 (1994).

80
W. E. Burcham, Elements of nuclear physics (Longman, London, 1979), p. 76.

81
K. Arstila, Raskaiden ionien elektronisen jarruuntumisen nopeusriippuvuus, Master's thesis, University of Helsinki, 1994.

82
W. Brandt and M. Kitagawa, Effective stopping-power charges of swift ions in condensed matter, Phys. Rev. B 25, 5631 (1982).

83
T. A. Tombrello, Distribution of damage along an MeV ion track, Nucl. Instr. Meth. Phys. Res. B 83, 508 (1993).

84
A. Audoard, E. Balanzat, S. Bouffard, J. C. Jousset, A. Chamberod, A. Dunlop, D. Lesueur, G. Fuchs, R. Spohr, J. Vetter, and L. Thomé, Evidence for Amorphization of a Metallic Alloy by Ion Electronic Energy Loss, Phys. Rev. Lett. 65, 875 (1990).

85
T. A. Tombrello, Damage in metals from MeV heavy ions, Nucl. Instr. Meth. Phys. Res. B 95, 501 (1995).

86
W. Eckstein, Computer Simulations of Ion-Solid Interactions (Springer, Berlin, 1991), p. 40.



Kai Nordlund
Thu Oct 5 14:40:59 EET 1995